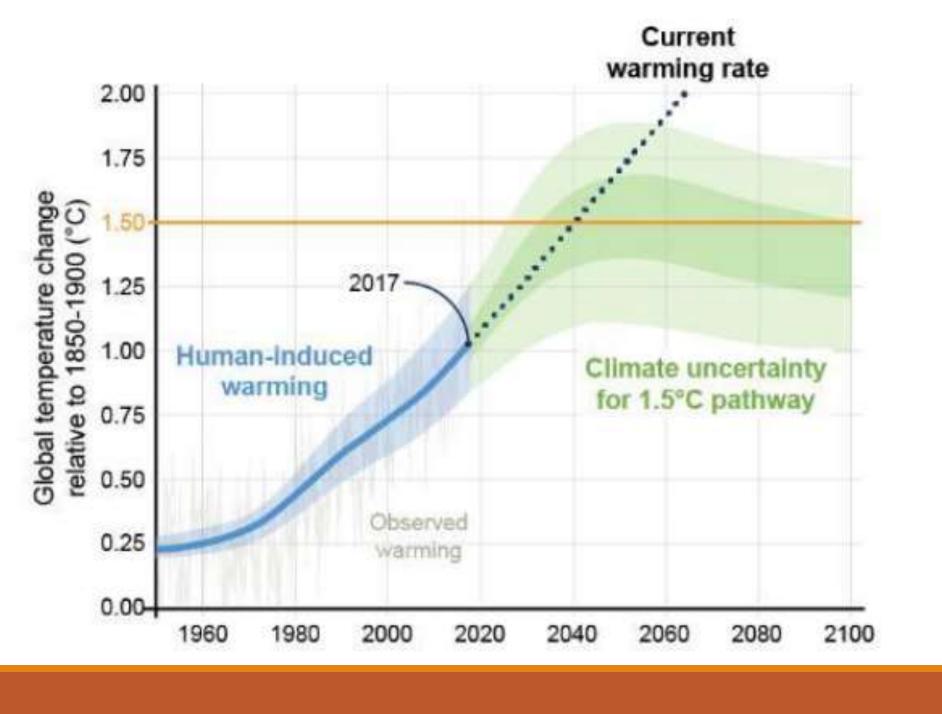
Local 20/20 Summary of IPCC 1.5°C Special Report and 4th National Climate Assessment

DECEMBER 6, 2018


IPCC Key Messages – General

Global warming of 1.0°C reached in 2017

Global warming is likely to reach 1.5°C between 2030 and 2052 at the current rate.

"... models project **robust differences**, between present-day and warming of 1.5°C and 2°C."

4th National Climate Assessment

"neither global efforts to mitigate ... climate change nor ... adapt to the impacts ... approach the scales needed to avoid substantial damages to the U.S. economy, environment, and human health..."

To limit warming to 1.5°C, global emissions must be reduced by **45% from 2010 levels by 2030**

Net-Zero Global Anthropogenic CO₂ Emissions

- Will halt anthropogenic global warming
- Max Temp determined by net anthropogenic CO₂ up to time of Net-Zero (multi-decadal)

Net Negative CO₂ emission may be needed to

- Prevent further warming
- Reverse ocean acidification
- Minimize SLR (longer time scale)

Carbon Dioxide Removal (CDR)

- CDR, at scale, is unproven
- Reliance on CDR is major risk to limit warming
- Primary CDR
 - Bioenergy with carbon capture
 - Afforestation

Setting a high price on emissions is necessary to limit warming to 1.5°C

The price on emissions to limit to 1.5°C needs to be 3 to 4 times the price needed to limit to 2.0°C

Key Messages - Impacts

WORLD RESOURCES INSTITUTE

HALF A DEGREE OF WARMING MAKES A BIG DIFFERENCE:

EXPLAINING IPCC'S 1.5°C SPECIAL REPORT

1.5°C

2°C IMPACTS

EXTREME HEAT
Global population exposed to severe heat at least once every five years

1.5°C

2°C IMPACTS

2°C IMPACTS

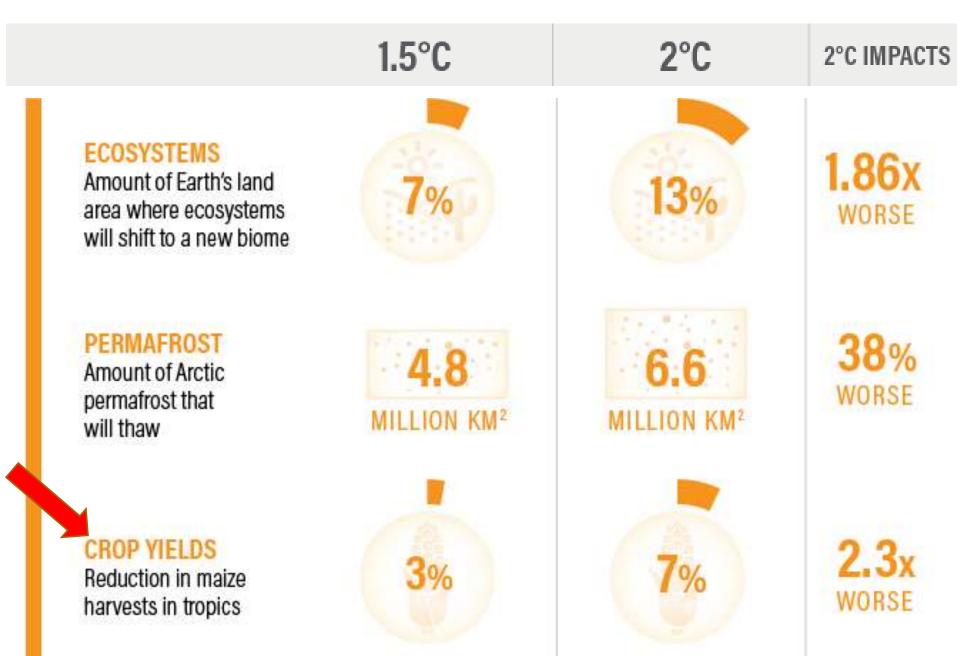
SEA-ICE-FREE ARCTIC

Number of ice-free summers AT LEAST 1 EVERY

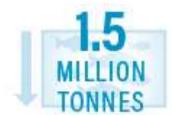
AT LEAST 1 EVERY
10 YEARS

10x WORSE

SEA LEVEL RISE


Amount of sea level rise by 2100

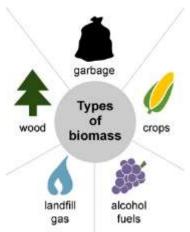
.06M MORE


Further decline in coral reefs

99% UP TO 29% WORSE

FISHERIES

Decline in marine fisheries



2x WORSE

Key Messages – Electricity

Renewable energy (including hydro, solar, wind, geothermal, and biomass) needs to increase significantly by 2050 to stay within 1.5°C.

Renewable energy from biomass is key for both electricity and transportation.

Key Messages – Electricity

Reduce building emissions by 80–90% by 2050 to hit 1.5°C

New construction to be fossilfree and near-zero energy by 2020

Key Messages – Electricity

Climate Solutions Study: 4 scenarios to get to 100% fossil fuel free in the Pacific NW by 2050

- The cheapest solution (0.6¢/kwh increase) substantially increases:
 - Energy efficiency
 - Wind
 - Solar
 - Energy storage
 - And switches gas power plants from fossil-based to renewable gas

Key Messages – Transportation

To limit warming to 1.5°C

- Almost 40% reduction in final energy use by the transport sector by 2050.
- Transition away from fossil-fueled passenger vehicles by 2035–2050

Biofuels are the most viable means of decarbonising intercontinental travel

Key Messages – Transportation

Transition in Jefferson County may include:

- Modal shifts from cars to public transit, biking, and walking
 - use incentives, disincentives, and infrastructure
- A transit system goal to reduce community emissions
- Urban design increased housing near jobs and services
- Efficient vehicles more electric vehicles and infrastructure
- Ridesharing and avoided journeys

Key Messages - Land Use, Agriculture & Food Systems

Trade-offs exist in land use for bioenergy and food Land Use Planning is essential for mitigation/adaptation At 1.5°C warming crop yields & nutrition values decline Conservation Ag may help sequester carbon in soil Livestock contribute up to 14.5% of anthropogenic GHG

Key Messages - Land Use, Agriculture & Food Systems

Managing food waste - up to 1/3 of all food goes uneaten
Decreasing food waste reduces GHG emissions
Returning food nutrients to the soil sequesters carbon
Biochar may help sequester carbon in soil

References

IPCC Report: http://www.ipcc.ch/report/sr15/

Fourth National Climate Assessment: https://nca2018.globalchange.gov/

World Resource Institute: 8 Things You Need to Know About the IPCC 1.5°C Report https://www.wri.org/blog/2018/10/8-things-you-need-know-about-ipcc-15-c-report

Other Resources:

Center for Climate and Energy Solutions: IPCC 1.5-Degree C Special Report https://www.c2es.org/content/ipcc-1-5-degree-c-special-report/

Union of Concerned Scientists: What do the findings of the recent IPCC report on climate change tell us? https://www.ucsusa.org/our-work/ucs-publications/IPCC